Original Article

Study of The Protective Effect of Garlic Water Extract on Dexamethasone-Induced Hepatotoxicity and Insulin Resistance in Adult Male Albino Rats

Ahmad Mohammad Farag Alkot *1, Suhaib Alsayed Naeem 2, Said S. M. M. El Sayed 1, Ashraf M. M. Algendy 1, Mohamed Ghazy Attia Hablas 3

1 Department of Medical Physiology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
2 Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
3 Department of Histology, Faculty of Medicine [Assiut], Al-Azhar University, Assiut, Egypt

ABSTRACT

Background: The liver has an essential role in the metabolism and detoxification of various metabolites and drugs so it is liable to injury. Long-term use of dexamethasone may cause hepatic injury and insulin resistance. Garlic contains a variety of effective compounds that exhibit antioxidant, hypcholesterolemic, hypoglycemic, antithrombotic, antibiotic, anticancer, as well as hypotensive activities.

Objective: To study the effect of garlic water extract on hepatic toxicity and insulin resistance induced by dexamethasone in adult male albino rats.

Materials and Methods: Twenty-four adult male albino rats of a local strain were divided into three equal groups, group 1 [control group], group 2 [dexamethasone-treated group], and group 3 [dexamethasone and garlic-treated group]. After two weeks from the onset of the experiment serum was isolated from blood samples for assessment of Alanine Transaminase [ALT], Aspartate Transaminase [AST], serum albumin, Alkaline Phosphatase [ALP], total bilirubin, fasting blood glucose [FBG], and Fasting insulin level. Homeostasis Model Assessment for Insulin Resistance [HOMA-IR] was then calculated. Samples of the liver were taken for histopathological studies.

Results: There was a significant elevation in ALT, AST, ALP, and total bilirubin and a significant reduction in serum albumin in the dexamethasone-treated group when compared with the control group. ALT, AST, ALP, and total bilirubin significantly improved in the dexamethasone and garlic extract-treated group. Also, there was a significant elevation in FBG, insulin level, and HOMA-IR in the dexamethasone-treated group when compared with the control group. These parameters were significantly decreased in the dexamethasone and garlic extract-treated group when compared with the dexamethasone-only treated group.

Conclusion: Garlic water extract showed a potential protective effect against dexamethasone-induced liver injury and insulin resistance.

Keywords: Garlic water extract; Dexamethasone; Hepatotoxicity; Insulin resistance.

This is an open-access article registered under the Creative Commons, ShareAlike 4.0 International license [CC BY-SA 4.0] [https://creativecommons.org/licenses/by-sa/4.0/legalcode.]
INTRODUCTION

The liver has an essential role in the metabolic pathways of carbohydrates, lipids, and proteins. Furthermore, the detoxification and biotransformation of various metabolites and drugs occur mainly in the liver, hence, it is susceptible to the toxicity of these agents [1]. Continuous exposure of the liver to harmful metabolites, poisons, and drugs can lead to various acute and chronic liver diseases [2].

Glucocorticoids are important anti-inflammatory and immunosuppressive therapy. Various acute and chronic inflammatory and immune-mediated diseases are widely treated with glucocorticoids. Furthermore, many organ transplants and many malignancies such as leukemia are also using glucocorticoids as part of their therapeutic regimens. Long-term use of glucocorticoids may lead to metabolic disease, osteoporosis, and cardiovascular disorders [1].

Dexamethasone is an effective immunosuppressive and anti-inflammatory agent however, its use may have several side effects, for example, hepatic injury, skeletal muscle atrophy, and insulin resistance. Dexamethasone increases the production of free radicals which in turn increases oxidative stress-mediated tissue damage [3].

Insulin resistance is reduced responsiveness in insulin-targeting tissues to high physiological insulin levels and is considered the pathogenic driver of many diseases, including metabolic syndrome, nonalcoholic fatty liver disease [NAFLD], atherosclerosis, and T2DM. In the prediabetic condition, insulin levels increase to meet normal insulin requirements leading to chronic hyperinsulinemia, hyperglycemia-induced β-cell failure, and eventually T2DM [4].

Continuous exposure of the liver to harmful environmental and pharmacological agents may lead to liver diseases. The prevalent obesity and sedentary lifestyle are key determinants in insulin resistance and its subsequent metabolic disorders. Therefore, the optimization of pharmacotherapy, search and study of new drugs which can protect the liver and enhance tissue sensitivity to insulin is a topical issue of pharmacy and medicine. Phytotherapy has several advantages over traditional therapy including being low-toxic, can be used for long periods without significant side effects, being well combined with synthetic drugs, and having a complex activity through many biologically active compounds [5].

Since ancient times, people have utilized garlic [Allium sativum] as a remedy. Garlic will probably find a position as a complement to existing methods of illness prevention and treatment even though it is not yet accepted as a viable replacement to these treatments. Garlic includes a number of potent chemicals that have anti-inflammatory, anti-platelet, anti-coagulant, antibacterial, anti-cancer, and hypotensive properties [6]. The first scientific studies on garlic were reported by Louis Pasteur, who attributed the plant as having anti-bacterial properties. Studies have also reported that garlic extracts have anti-inflammatory, anti-microbial, anti-asthmatic, and anti-cancer effects [7]. Garlic also known to contain natural antioxidants that can remove reactive oxygen species [ROS] [8].

THE AIM OF THE WORK

This work aimed to study the effect of garlic water extract on hepatic toxicity and insulin resistance induced by dexamethasone in adult male albino rats.

MATERIALS AND METHODS

Animal models for this study were 24 adult male albino rats of a local strain. They were 8 weeks old, weighing between 110 and 140 grams. They were housed at room temperature with a natural light-dark cycle in adequate cages [42x26x16 cm for every 4 rats]. Before beginning the experiment, they were held for 10 days to allow for acclimatization to the new surroundings. There were three equal groups of animals, each with eight rats [n = 8].

➢ **Group 1** [control group]: eight rats were treated with saline at a dose of 2ml/kg body weight via intraperitoneal injection daily for two weeks.

➢ **Group 2** [dexamethasone-treated group]: eight rats were treated with dexamethasone sodium phosphate [manufactured by Amriya Pharmaceuticals Industries, Alexandria, Egypt] at a dose of 1 mg/kg body weight via intraperitoneal injection daily for 2 weeks [9].

➢ **Group 3** [dexamethasone and garlic treated group]: eight rats were treated with...
dexamethasone sodium phosphate at a dose of 1 mg/kg body weight via intraperitoneal injection daily and treated with garlic water extract at a dose of 500 mg/kg body weight via intraperitoneal injection daily for 2 weeks [6].

Fresh garlic bulbs that were easily accessible locally were used to make aqueous garlic extract. On a bed of crushed ice, the garlic bulbs were peeled. In 70 ml of cold, sterile 0.9% NaCl with some broken ice, 50 grams of peeled garlic that had been chopped into little pieces. In a blender, homogenization was done in 20-second bursts over the course of 30 seconds [the total time of homogenization was about ten minutes]. Three separate passes through cheesecloth were made with the homogenized mixture. The clear supernatant from the centrifuged filtrate was then diluted to a volume of 100 ml with ordinary saline. Based on the weight of the starting material [50 g/100 ml], it was determined that this garlic preparation had a 500 mg/ml concentration. Small aliquots of the aqueous garlic extract at a dose of 500 mg/kg body weight via intraperitoneal injection daily for 72 hours, liver der, homogenization was done in 20

Blood samples were taken from the retro-orbital venous plexus under ether anesthesia two weeks after the experiment started and orbital venous plexus under ether anesthesia two weeks after the experiment started and [6]. When comparing the dexamethasone-treated group 2 with the control group 1, there was a significant elevation in both ALT and AST levels [P < 0.0001]. However, ALT and AST levels were higher in the dexamethasone and garlic extract-treated group 3 when compared to the control group 1 [P < 0.005 for ALT and P < 0.012 for AST] [Figure 1].

Data analysis: SPSS version 25 was used to analyze the collected data. If the data were normally distributed, the "Shapiro-Wilk" test, one-way analysis of variance [ANOVA], and post hoc "Tukey" test were performed to determine whether the distribution was normal. In the absence of normally distributed data, the "Kruskal Wallis" and "Mann Whitney U" tests were employed to compare means. The linear relationship between the variables under study was assessed using Spearman's correlation coefficient [ρ]. P 0.05 was regarded as statistically significant, and data were reported as means and SD.

RESULTS

Table [1] showed the means ± SD of studied parameters in different groups of the study.
Regarding bilirubin and ALP, their levels were higher in the group 2 when compared with group 1 [P < 0.0001]. When comparing the group 3 with group 2, the levels of bilirubin and ALP was significantly lower [P < 0.0001]. On the other hand, the levels of these parameters were significantly higher in group 3 when compared to group 1 [P < 0.0001 for ALP and P < 0.038 for bilirubin]. There was a significant difference in serum albumin level when comparing group 1 with the group 2 where it was lower in this group than in the control group [P < 0.0001]. Serum albumin level was higher in group 3 when compared with group 2 however the difference was insignificant [Figure 2].

When comparing the dexamethasone-treated group [2] with the control group 1, there was a significant elevation in FBS, insulin levels, and HOMA-IR [P < 0.0001]. When comparing the dexamethasone and garlic extract-treated group 3 with the dexamethasone-treated group 2, there was a significant improvement in the three parameters [P < 0.0001]. Similarly, when comparing the dexamethasone and garlic extract treated group [3] with the control group [1], FBS, insulin levels and HOMA-IR were significantly higher [P < 0.0001 for FBS and HOMA-IR and P < 0.005 for insulin]; meaning that treatment with garlic extract causes improvement in these parameters but is still significantly higher than the control group [Figure 3].

There was a significant positive correlation between ALT and HOMA-IR with correlation factors “ρ” 0.842 [P < 0.0001]. Also, there was a significant positive correlation between AST and HOMA-IR with correlation factors “ρ” 0.816 [P < 0.0001] [Figure 4].

There was a significant positive correlation between ALP and HOMA-IR with correlation factors “ρ” 0.838 [P < 0.0001]. Also, there was a significant positive correlation between bilirubin and HOMA-IR with correlation factors “ρ” 0.801 [P < 0.0001] [Figure 5]. On the other hand, there was a significant negative correlation between HOMA-IR and albumin level with correlation facto “ρ” -0.529 [P < 0.008] [Figure 6].

There was a significant positive correlation between FBS and insulin level with correlation facto “ρ” 0.882 [P < 0.0001] [Figure 7].

There was a significant positive correlation between FBS and HOMA-IR with a correlation factor of 0.958 [P < 0.0001]. Also, there was a significant positive correlation between insulin level and HOMA-IR with a correlation factor of 0.934 [P < 0.0001] [Figure 8].

Histopathological examination [routine Hematoxylin & Eosin [H & E] staining technique]

Normal rat liver tissue stained with H&E contains a normal hepatic lobule and a thin-walled central vein, hepatic cords radiating to the periphery alternating with hepatic sinusoids lined by Kupffer cells and endothelial cells.

The liver tissues of the dexamethasone-treated group showed sinusoidal wall and portal fibrosis and loss of normal hepatic architecture and inflammatory cells infiltration mainly lymphocytes. There is mild bile ductular proliferation with minimal cellular and canalicular cholestasis in the parenchyma with marked macro-micro vesicular steatosis and marked feathery degeneration in some areas [figures 10-12] compared to the normal control group [Figure 9].

Liver tissues in the dexamethasone and garlic water-treated group showed preservation of normal architecture of the liver tissue, with no fibrosis or steatosis [figures 13 & 14].

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group 1 (control)</th>
<th>Group 2 (dexamethasone-treated)</th>
<th>Group 3 (dexamethasone and garlic extract treated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (U/L)</td>
<td>39.5 ± 2.5</td>
<td>61.3 ± 4</td>
<td>45.2 ± 2.8</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>81.1 ± 3.4</td>
<td>117 ± 6.6</td>
<td>89.5 ± 5.3</td>
</tr>
<tr>
<td>ALP (U/L)</td>
<td>118.8 ± 5.9</td>
<td>246.3 ± 8.1</td>
<td>158.7 ± 7.2</td>
</tr>
<tr>
<td>Bilirubin (mg/dL)</td>
<td>0.51 ± 0.18</td>
<td>1.5 ± 0.16</td>
<td>0.7 ± 0.1</td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td>4.1 ± 0.4</td>
<td>3.4 ± 0.4</td>
<td>3.8 ± 0.3</td>
</tr>
<tr>
<td>FBG (mg/dL)</td>
<td>88.3 ± 7</td>
<td>195.1 ± 12</td>
<td>137.9 ± 7.3</td>
</tr>
<tr>
<td>Insulin (micro U/L)</td>
<td>9.7 ± 0.6</td>
<td>13.4 ± 0.9</td>
<td>11 ± 0.7</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>2.1 ± 0.18</td>
<td>6.4 ± 0.57</td>
<td>3.7 ± 0.27</td>
</tr>
</tbody>
</table>

Table [1]: Mean and SD of studied parameters in different groups.
Figure [1]: ALT and AST levels in studied groups; a = significant difference when compared with group 1; b = significant difference when compared with group 2

Figure [2]: Bilirubin, Albumin, and ALP levels in studied groups; a = significant difference when compared with group 1; b = significant difference when compared with group 2

Figure [3]: FBG, Insulin, and HOMA-IR levels in studied groups; a = significant difference when compared with group 1; b = significant difference when compared with group 2
Figure [4]: Correlation between ALT & HOMA-IR and AST & HOMA-IR

Figure [5]: Correlation between ALP & HOMA-IR and bilirubin & HOMA-IR

Figure [6]: Correlation between albumin & HOMA-IR
Figure [7]: Correlation between FBS & insulin

Figure [8]: Correlation between FBS & HOMA-IR and insulin & HOMA-IR

Figure [9]: A photomicrograph of a section in normal rat liver. showing cords of hepatocytes radiating from the central vein which appeared with normal and normal blood sinusoids (H & E)
Figure [10]: A photomicrograph of a section in dexamethasone-treated rat liver tissue showing steatosis with inflammatory cells infiltrations (H & E).

Figure [11]: A photomicrograph of a section in dexamethasone-treated rat liver tissue. The Figures show steatosis with portal area fibrosis extension (H & E).

Figure [12]: A photomicrograph of a section in dexamethasone-treated rat liver tissue showing degeneration with portal area fibrosis and mild bile duct proliferation (H & E).
Alkot AMF, et al. IJMA 2022 August; 4 [8]: 2606-2618

Figure [13]: A photomicrograph of a section in garlic water-treated rat liver tissue. The figure showed a more or less normal central vein, with the restoration of normal hepatic architecture & radiating regenerated cords of hepatocytes with the reappearance of open-face nuclei and normal blood sinusoids but there is still a presence of infiltration by inflammatory cells around the portal vein and mild steatosis (H&E)

Figure [14]: A photomicrograph of a section in garlic water-treated rat liver tissue. The figure showed more or less normal central vein, with the restoration of normal hepatic architecture & radiating regenerated cords of hepatocytes with the reappearance of open face nuclei and normal blood sinusoids but there is still presence of mild fat cells infiltrations and blood inside and around the portal vein and mild parenchymal steatosis (H&E)

DISCUSSION

Dexamethasone is frequently used as an immunomodulatory and anti-inflammatory drug. Clinical doses of dexamethasone usually do not exceed 8 mg per day. Its dose may reach up to 40mg/day if pulse steroid therapy is needed such as during exacerbation of immune diseases but this continues for short duration ranging from 3 to 5 days. When steroids are indicated for clinical use, they are usually used for long duration which will precipitate toxic effects in various tissues. The protracted administration and/or overdose of dexamethasone may have negative side effects, such as insulin resistance, development of diabetes
and hypertension, liver and renal affection, osteoporosis, immunosuppression and super-imposed infections [11].

Our study showed that treatment with dexamethasone caused a significant elevation in liver enzymes; ALT and AST also the levels of ALP & bilirubin were elevated whereas the level of albumin was significantly lower. All these changes indicated the liver injury induced by dexamethasone. Similar results were reported by Zhu and coworkers [12] who noted that dexamethasone treatment dramatically elevated ALT, AST, and ALP activities, as well as a significant elevation of blood bilirubin levels indicated the onset of liver impairment.

Nkono et al. [13] reported that the administration of dexamethasone induced a significant increase in AST, ALT, ALP, and bilirubin levels. Similarly, El-Sawy et al. [14] reported that dexamethasone-treated rats showed a significant elevation in liver enzymes ALT, AST, and ALP and also in serum bilirubin when compared to the control ones.

The results of this study are also concordant with Soliman et al. [15] who reported that treatment of rats with dexamethasone was associated with hepatocyte injury leading to an increase in liver enzymes together with elevated bilirubin level. Dexamethasone also induces a decrease in protein synthesis and an increase in protein catabolism causing a decrease in serum albumin levels.

Yamada et al. [16] reported that dexamethasone has several effects on the metabolism of liver cells in the culture one of them is depression of albumin synthesis.

The metabolic profile of rats treated with dexamethasone showed an increase in amino acids that are implicated in the suppression of protein synthesis and protein breakdown [9].

Exposure to a high dosage of dexamethasone leads to an increase in reactive oxygen species production that results in mitochondrial dysfunction, elevated cytosolic calcium, and irreversible oxidative modifications of cellular lipids, proteins, and DNA eventually causing cellular injury [12].

Our study showed that the group treated with dexamethasone concomitantly with garlic extract showed significantly lower levels of ALT, AST, ALP, and bilirubin levels when compared with the group treated with dexamethasone alone indicating a protective effect of garlic extract against dexamethasone-induced hepatocyte injury.

It has been validated in many reports that oxidative stress induced by glucocorticoids played a crucial role in the pathophysiology of cellular dysfunction. According to this concept, assortments of natural pathologies and antioxidants have been used to hinder dexamethasone-induced cellular injury. Some antioxidants from natural sources can effectively scavenge free radicals and ROS, thus reducing or eliminating oxidative stress [17].

The antioxidant properties of garlic have been reported in many previous studies [6, 18-21] and many other reports. The advantages of natural antioxidants against drug-induced toxicity have received more attention. To restore the oxidant/antioxidant equilibrium and stop or lessen oxidative assaults, a potential source of natural antioxidants can be used [22].

Tavares et al. [23] reported that garlic contains bioactive compounds such as organosulfur, phenols, and saponins with many biological activities, including antioxidant, hepatoprotective, anti-diabetic, anti-obesity, and many other activities.

The current study showed that dexamethasone caused a significant elevation in FBS, insulin level, and HOMA-IR when compared to the control. These findings are consistent with other reports [5, 24, 25].

In line with the hyperglycemic impact of dexamethasone and an increase in insulin levels linked with dexamethasone therapy both in vivo and in vitro, Shittu et al. [9] observed a significant rise in blood glucose levels in dexamethasone-treated rats. They stated that an adaptive reaction of the pancreatic islet to hyperglycemia results in elevated insulin levels.

When a larger insulin dose is necessary to have the same effects on glucose storage, this is known as insulin resistance. As a result, the liver, muscles, and adipose tissues absorb and use less glucose, while the liver produces more glucose, which causes hyperglycemia [26].
Numerous researchers have confirmed the reliability of HOMA-IR in predicting insulin resistance in rodents. Since HOMA-IR and insulin resistance are correlated, a rise in HOMA-IR denotes insulin resistance while a reduction in HOMA-IR denotes insulin sensitivity [27]. In all insulin-sensitive organs, glucocorticoids are strong inducers of insulin resistance. They are hormones that promote catabolism and alter the primary anabolic insulin pathway. Multiple molecular pathways, including the insulin receptor and transcription factors, are involved in doing this [28].

The current study showed that FBS, insulin level, and insulin sensitivity improved with garlic extract treatment. The hypoglycemic and insulin-sensitizing effects of garlic extract were reported by Supakul et al. [28]. Allicin included in garlic extract may improve insulin sensitivity. This substance’s metabolites have been demonstrated to enhance glucose absorption and utilization by turning on multiple insulin signaling cascade stages [28].

Garlic is one of the most widely accepted anti-diabetic plants. The presence of volatile Sulphur compounds such alliin, allicin, diallyl disulphide, diallyl trisulphide, diallyl sulphide, S-allyl cysteine, ajoene, and allyl mercaptan is primarily responsible for garlic’s favorable impact on diabetes mellitus. Due to allicin and its metabolites, garlic extracts have been shown to be useful in lowering insulin resistance and raising insulin sensitivity [29]. Garlic is advantageous for lowering HbA1c, fasting insulin, FBS, and insulin resistance [30].

In a recent clinical trial study, 50 T2DM patients with dyslipidemia were divided into two groups: one group received traditional therapy along with hypolipidemic and hypoglycemic medications as the control, and the other group received traditional therapy along with the herbal compound as the intervention [300 mg garlic]. After 12 weeks of therapy, the intervention group’s HbA1c levels considerably dropped, although fasting blood sugar levels remained unaffected [31].

Liver sections from healthy [control] mice stained with HE in microscopic specimens showed the typical and consistent architecture of hepatocytes and portal space. Due to the liver toxicity brought on by dexamethasone, there was severe steatosis, hepatic inflammation, mononuclear cell infiltration around the hepatic veins, partial destruction of the nearby hepatocytes, and portal fibrosis. On the other hand, using garlic water extracts to treat the condition decreased the inflammatory response, reduced the amount of steatosis and portal fibrosis, and restored normal hepatocyte and portal space architecture.

These findings are concomitant with Bhat et al. [32] and Feng et al. [33] who reported that in liver tissues of dexamethasone-treated rats, steatosis was the main histological problem so it is considered one of the causes of nonalcoholic fatty liver. Abou-Seif et al. [3] stated that administration of dexamethasone for an extended period of time or at a high dose by any method can seriously change the liver’s structure and consequently its functioning.

The drug-induced liver injury is a wide title that describes how can drugs affect the liver and induce injury through different mechanisms, which may be dose or duration related or may be idiosyncratic [34].

Corticosteroids at low doses are thought to be safe for hepatic function, but excessive doses and/or prolonged usage of the medication can cause steatohepatitis. The main mechanism of corticosteroid-induced hepatotoxicity is thought to be increased oxidative stress. Additionally, steroid-induced hepatic steatosis may be attributed to metabolic peculiarities brought on by abnormal hepatic metabolism of corticosteroids [35].

Dexamethasone induced hepatocytes injury will subsequently lead to fatty infiltration of hepatocytes [steatosis] and then degeneration and inflammation of liver tissue [steatohepatitis] and this explains other histopathological complications such as inflammatory cells infiltration and fibrosis [36].

Many agents were used as hepatoprotectives, but garlic specially recorded significant success in protecting the liver tissue from many injurious agents including steroids, acetaminophen, phenobarbital, and ethanol [36].

Conclusion: Garlic water extract showed a protective effect against dexamethasone-induced liver injury and insulin resistance owing to the antioxidant and insulin-sensitizing properties of its chemical constituents. Garlic
could be used; as a complement to the established method; to relieve the hazards of glucocorticoid therapy and to help control metabolic syndrome taking advantage of traditional pharmacological agents of being natural, has minimal side effects, cheap and available.

Conflict of Interest: None

REFERENCES

19. Fitrotin U, Hidayah BN. Investigation of Antioxidant Properties on Some Garlic Varieties

