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 Abstract  
Article information Background: Artificial intelligence [AI] is defined as the science and engineering of 

building intelligent machines that have the capacity to learn and emulate human 

intellect. Many of us may believe that AI is somewhat sophisticated that we do 

not want to get associated with since we are doctors, know our specialization, 

and do not need any artificial assistance. But fortunately, or unfortunately, this 

is not a selection. We live wrapped in AI. 

Summary and Conclusion: Artificial intelligence is rapidly being employed in 

nephrology, among other medical fields. AI's function in kidney disease 

involves warning the presence of CKD, performing diagnostic imaging, 

determining pathology, and directing treatment. We've come a long way, from 

empirical medicine to evidence-based medicine and now artificial intelligence. 

Although artificial intelligence is still in its early phases, it has the potential to 

grow in the future. AI has various challenges, including data quality, privacy, 

and regulatory concerns, a lack of standardization among centers, and a lack of 

verification. 
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INTRODUCTION 

The frequent etiology of kidney disease, which is brought on by 

diabetes, hypertension, obesity, and aging, makes it a serious public 

health concern. These disorders are also becoming more common. 

According to the Global Burden of Diseases, Injuries, and Risk 

Factors Study 2015, 750 million persons worldwide suffer from 

kidney disease [1]. The burden of kidney disease on society is 

enormous. According to a 2017 survey, the annual cost was roughly 

$1,205 for patients with stage 3 chronic kidney disease [CKD3], 

$1963 for those with CKD4, $8,035 for those with CKD5, and 

$34,554 for those requiring hemodialysis [2].  It is therefore critical to 

identify kidney illness early and take steps to prevent it from 

progressing to end-stage renal disease. 

A growing number of research studies are assessing the potential 

uses of artificial intelligence [AI] in the context of kidney diseases, 

making it a potentially useful tool in healthcare. To appreciate the 

changing environment of AI research in renal illness, a bibliometric 

study is needed [3].  

Artificial intelligence [AI] is defined as the science and 

engineering of building intelligent machines that have the capacity to 

learn and emulate human intellect. Many of us may believe that AI is 

something sophisticated that we do not want to contract with since we 

are doctors, know our specialization, and do not want any artificial 

support. But fortunately, or unfortunately, this is not a choice. We live 

wrapped in AI: Amazon, Google, Alexa, Tesla, Roomba, Siri, Deep 

L, facial recognition on our mobile telephone, etc., as well as, more 

newly, Open AI with its Chat bot “Chat GPT” [Generative pretrained 

transformer], and its customized image designer, Copilot, DALL-E2. 

Chat GPT is a large language model [LLM] based on the GPT [4].  

With the development of robots in 1956, artificial intelligence [AI] 

was formally launched. Since then, it has significantly advanced and 
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is now a standard tool in many industries, including banking[5], 

agriculture [6], and medicine [7]. Additionally, it significantly lowers the 

time that people spend engaging in extremely risky activities [8].  

Following the explosion of numeric data obtainability, and the 

capacity of AI algorithms to integrate and learn from enormous 

datasets, AI has been widely employed in clinical policymaking, 

biomedical research, and medical education [9]. The US Food and Drug 

Administration [FDA] and other regulatory authorities have 

authorized clinicians to utilize AI-based technologies in a variety of 

medical sectors [10]. AI applications also expand into the physical 

realm, with robotic prostheses, physical task support systems, and 

mobile manipulators aiding in the delivery of telehealth. Numerous 

endoscopy manufacturers have launched their AI devices on the 

marketplace with regulatory agreement in Europe and Asia[11]. 

Nephrology appears to have all of the attributes to lend itself to AI 

research and developments, particularly the kidney transplantation 

[KT] area [12]. The field of AI in renal diseases is dynamic and fast-

evolving and provides vital information for spotting emerging 

patterns, technological advancements, and multidisciplinary 

partnerships that contribute to the advancement of knowledge in this 

important subject [3].    

Definition of Artificial Intelligence [AI] 

  Artificial Intelligence [AI], simply refers to the capacity of 

machines to simulate human cognitive functions, like learning, 

problem-solving, and decision-making, and propelled by algorithms 

and machine learning techniques that facilitate data analysis, identify 

patterns, and make predictions. Artificial Intelligence [AI], is 

considered as the science and engineering of making intelligent 

machines able to mimic human intelligence [12].   

Forms of Artificial Intelligence [AI] [Figure 1] 

Machine learning  

Machine learning [ML] is a branch of artificial intelligence 

focused on developing computer programs capable of accessing data 

and learning from it without explicit programming for a particular 

task. This sets ML apart from traditional statistics [13].

 

 
Figure [1]: Types of Artificial Intelligence [AI] [12].

ML employs algorithms to examine, understand, and learn from a 

specific dataset, and based on the insights gained, make optimal 

decisions.  As in the case of predicting 10-year kidney graft survival, 

we input a database containing various variables such as recipient age, 

gender, history of rejection, infections, etc., and each kidney transplant 

instance is categorized as either having survived or failed by 10 years. 

The algorithm then utilizes this data to identify the function that 

correlates the input variables with the output values[12] .  Afterward, 

the trained algorithm produces a model that can forecast the output for 

new input values that were not part of the training data. The predictors 

or features are the input to any ML algorithm, while the output from 

the algorithm is known as the target or label. In deep learning, a 

machine can be given raw data and can automatically identify the 

desired representations or features for detection or classification [12] . 

Let's consider a scenario where a model needs to determine whether 

an image contains a malignant tumor. The algorithm is organized into 

multiple layers in deep learning to form an artificial neural network 

[ANN]. ANNs are designed to imitate the structure of the human 

brain. An ANN consists of a single input layer, the possibility of 

hidden layers, and a single output layer. These layers are composed of 

rows of "neurons." The configuration includes the quantity of neurons 

in each layer and the quantity of layers [12]. 

Natural Language Processing [NLP] 

Natural Language Processing [NLP] is a discipline of AI 

concerned with the interface between computers and human language. 

Definitely, NLP attempts to enable computers to comprehend and 

produce natural language, which allows computers to understand both 

spoken speech and written material. as well as to perform various tasks 

such as text generation, text classification, machine translation, and 

information extraction [Figure 2] [3]. 
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Figure [2]: Use of NLP to extract data from medical records. NLP, a branch of AI, can convert the human language used in medical records, which may include typing errors, into a 

computer-understandable language in the form of algorithms [3].  

Robotics 

      Robotics uses artificial intelligence to create and construct 

robots or devices that can execute tasks independently or semi- 

 

 

autonomously. In general, robotics incorporates various AI 

technology components, such as natural language processing, 

machine learning, and perception.  AI-based robots are already in use 

in a variety of areas, including healthcare, retail, and manufacturing, 

and may be used to assist with product development [13]. 

Box [1]. Definitions of the Core Concepts Used in Medical Artificial Intelligence [MAI] [13] 

 

Algorithm: a set of rules that precisely defines a sequence of operations. 

Artificial intelligence [AI]: a set of algorithms that enable computations making it possible to perceive, reason, and act. 

Augmented intelligence: an alternative conceptualization of artificial intelligence that focuses on enhancing human intelligence rather than 

replacing it. 

Machine learning [ML]: a branch of artificial intelligence in which algorithms have the ability to learn and improve from experience, 

without being explicitly programmed for a specific task. 

Supervised learning: a set of machine learning algorithms that have the ability to learn from labeled data and make predictions. 

Unsupervised learning: a set of machine learning algorithms that have the ability to infer the structure of unlabeled data. 

Support vector machine [SVM]: a supervised machine learning algorithm that can classify data and detect outliers by constructing adapted 

hyperplanes, in which data belonging to different categories are linearly separated. SVM is fast but often not as accurate as other 

approaches such as deep learning. 

Random forest algorithm [RF]: a supervised machine learning algorithm that builds multiple decision trees to obtain a more precise 

prediction or classification: the output of the algorithm corresponds to the output of the majority of the trees. RF is a fast algorithm 

that performs well even if data are incomplete; however, RF interpretability is questionable. 

Perceptron: historically, the first model of artificial neurons used in neural networks. Perceptrons are characterized by a finite number of 

weighted binary inputs and 1 binary output. If the weighted sum of the inputs exceeds an arbitrary threshold value called a bias, the 

neuron is activated and its output is 1; otherwise, the output of the neuron is 0. 

Sigmoid neuron: an improved model of artificial neurons based on perceptrons. Sigmoid neurons are characterized by input values between 

0 and 1; their output, which also lies between 0 and 1, is the value of the activation function of the neuron, usually the sigmoid 

function. Contrary to perceptrons, sigmoid neurons in a neural network can take advantage of learning algorithms for the network 

to automatically learn from data sets. 

Artificial neural network [ANN]: a supervised or unsupervised machine learning algorithm based on a set of artificial neurons organized 

in layers, which can approximate complex functions involved in classification or prediction processes. 

Deep learning: a supervised or unsupervised machine learning algorithm based on neural networks, often specialized in image recognition, 

which has multiple layers of nonlinear processing units for feature extraction and transformation. 

Big data: refers to data sets that are too large or too complex for standard data processing techniques. Such data sets are encountered in large 

clinical trials or genomic studies [for example, DNA methylation or RNA sequencing results]; these data sets can potentially be 

analyzed by artificial intelligence algorithms. 
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Figure [3]: Clinical applications of AI in kidney diseases. CKD-MBD: Chronic kidney disease-mineral and bone disorder; AVF: arteriovenous fistula [14] 

 
 

Application of AI for Kidney Diseases 

      In order to help with early diagnosis and prompt treatment, 

artificial intelligence [AI] is frequently utilized in the clinical diagnosis 

and treatment of renal illnesses, particularly acute kidney injury [AKI] 

patients. AI can predict risk and optimize therapy for patients with 

chronic kidney disease [CKD], hemodialysis [HD], peritoneal dialysis 

[PD], and kidney transplant patients. AI is also capable of analyzing 

renal biopsy pictures for pathological diagnosis. [figure 3] [14]. 

1- Diagnosis: 

Clinicians can make more informed decisions with AI, resulting 

in better patient outcomes. However, it is critical to guarantee that the 

use of AI in diagnosis is done in an ethical and transparent manner, 

with adequate safeguards in place to preserve patient privacy and 

autonomy. Overall, the use of AI in diagnosis has huge potential to 

enhance medical practice, and physicians must embrace this 

technology and integrate it into their regular practices [4]. The diagnosis 

of chronic kidney diseases is now being impacted by the application 

of artificial intelligence. A random forest algorithm has been created 

to allow for the early detection of chronic kidney disease [CKD][15]. 

Through the use of ML methods, scientists have identified metabolic 

signatures linked to pediatric CKD by establishing connections 

between sphingomyelin-ceramide and plasmalogen dysmetabolism 

with focal segmental glomerulosclerosis [16].  

Using image recognition, researchers have effectively replicated 

the ability of nephropathologists to extract diagnostic, prognostic, and 

therapeutic data from native or transplanted kidney biopsies [17]. 

Computer Aided Diagnosis [CAD] involves using medical 

images and computer image processing to evaluate the characteristics 

of the area of interest, which can help doctors quickly and accurately 

identify and analyze lesions [18]. The kidney's most common genetic 

condition is autosomal dominant polycystic kidney disease [ADPKD], 

which involves the gradual development of renal cysts leading to 

increasing kidney size and declining renal function. Total kidney 

volume [TKV], a crucial biomarker for assessing ADPKD 

progression, is conventionally measured using stereology and manual 

segmentation in Computed Tomography [CT] and Magnetic 

Resonance Imaging. The accuracy of this method depends on user-

input parameters. Therefore, it is essential to develop rapid and precise 

TKV measurement techniques, with computer-aided design [CAD] 

being a promising option.  

In 2017, Sharma et al. [20] utilized a deep learning-based 

automated segmentation technique to calculate TKV from CT scans 

of 244 ADPKD patients. This innovative approach enables quicker 

and more consistent diagnosis and TKV measurement, aligning with 

manual segmentation by clinical professionals. Similarly, Kline et al. 

in 2017 [21] employed an automated method to segment the kidney and 

estimate TKV using 2,400 MR images. Their approach mimicked a 

multi-observer strategy to create a reliable and accurate method for 

kidney segmentation and TKV computation. However, CAD 

technology can only provide an initial diagnosis. If certain attributes 

are not covered in the training dataset, they need to be evaluated by a 

clinician before being incorporated into the training model to ensure 

continuous learning and improved diagnostic capability.  In 2019, van 

Gastel and colleagues [22] successfully created an entirely automated 

method for segmenting total kidney volume [TKV] using a deep 

learning network. They applied this method to 540 abdominal 

magnetic resonance images of ADPKD patients, specifically [T2-

weighted HASTE coronal sequences]. The TKV measurements 

obtained through the automated technique show a significant 

correlation with TKV measurements obtained through manual tracing. 

Pathological diagnosis 

Kidney interstitial fibrosis is an indicator of the presence and 

severity of chronic kidney disease. The traditional method of visually 

assessing the quantity is crucial for diagnosing kidney conditions. The 

Banff schema is utilized to categorize grades of renal allograft 

rejection. Visual scoring is susceptible to variability among 

pathologists and may lack reliability or reproducibility. Utilizing 

computer-aided diagnosis [CAD] can reduce pathologists' workload 

and offers the advantage of precision and rigor. Tey et al. [23] 

developed an automated system to quantify interstitial fibrosis in 40 

images and tested it on 70 patients with kidney disease to determine 

the error rate. The study revealed an average error rate of 9%. The 

system was deemed to be an effective quantification tool serving as a 

diagnostic aid.         
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In 2019, Kannan and colleagues [24] developed a deep learning 

system to accurately detect and segment glomeruli in digital images of 

human kidney biopsies. They used a convolutional neural network 

[CNN] multilabel classifier for segmentation, which successfully 

identified worldwide sclerosis glomeruli in the test data. This 

demonstrates the potential of deep learning in recognizing complex 

histologic features in digitized human kidney biopsies. Artificial 

intelligence can be utilized across all stages of tissue analysis and in 

integrating and analyzing data from various fields to make data-driven 

decisions about an individual patient's diagnosis, prognosis, and 

treatment. AI is a promising approach expected to enhance the 

histological assessment of both native and transplanted kidneys. The 

evolution of this new technology is eagerly anticipated, and 

nephropathologists should embrace and implement these new 

technologies in the global fight against kidney disease.      

The use of AI assists in categorizing the activity and chronicity of 

lupus nephritis and decreases variability between different observers. 

This categorization is based on various parameters including GN class, 

SLE GN activity index, Endocapillary hypercellularity, Leukocyte 

infiltration, Subendothelial hyaline deposits, Fibrinoid 

necrosis/karyorrhexis, SLE GN chronicity index, Cellular crescents, 

Glomerulosclerosis, Fibrous crescents, Interstitial fibrosis, and 

Tubular atrophy [17]. 

Prediction of outcomes and Alerting systems 

      Before the widespread adoption of machine learning in 

healthcare, doctors often relied on prediction scores or scales to help 

determine the best course of action for patients. These prediction 

scores typically encompass traditional risk factors as well as additional 

variables such as histology or imaging tests. Machine learning 

techniques have been employed in the development of these scores. 

       Table [1] includes the IgAN-tool [25] and the Prediction system 

for the risk of allograft loss in patients receiving kidney transplants 

[iBox risk prediction score] [26]. Scores have also been developed to 

predict the risk of acute kidney injury [AKI] in different patient 

populations, such as the postop-MAKE score [27], which estimates the 

risk of AKI in patients with normal renal function undergoing cardiac 

surgery, and AKI risk scores in patients with heart failure [28].  

 

Table [1]: Tools and scores by AI for Prediction of outcomes and Alerting systems in kidney diseases [4]. 

Field Study Scenario Purpose Algorithm Performance Limitations 

Glomerular 

disease 

IgAN-tool 

[Asia] [25] 

Multicenter, 

retrospective 

Prediction:  

patients with IgAN 

from multiple centers 

in China [n = 2047] 

ESKD prediction for 

IgAN patients 

Model based on 10 

clinical, laboratory, 

and histological 

variables  

XGBoost 

algorithm 

High discriminatory 

power: C-statistic of 

0.84 [95% CI 0.80–

0.88] for the 

validation cohort 

The study only 

performed on Asian 

patients 

Kidney 

transplant 
IBox [26] 

Prediction:  

kidney transplant 

recipients [n = 7557] 

from 10 medical 

centers across Europe 

and USA 

Prediction of allograft 

failure 

Eight functional, 

histological, and 

immunological 

prognostic factors 

combined into a risk 

score 

Cox regression 

with boot-

strapping for 

validation 

C index 0.18 [95% CI 

0.79–0.83] 

Validation cohorts: 

Europe: C index 0.81 

[95% CI 0.78–0.84] 

US: C index 0.80 

[95% CI 0.76–0.84] 

Emerging predictors 

post-transplant 

missing. Adherence is 

not taken into 

account. Validation in 

daily clinical practice 

remains to be 

analyzed 

AKI 
Postop-

MAKE [27] 

Prediction: 

patients with normal 

renal function 

undergoing cardiac 

surgery with 

cardiopulmonary 

bypass 

Prediction model 

based on nine 

preoperative variables 

[clinical, laboratory, 

imaging] that predict 

the risk of developing 

AKI after surgery 

Nanogram. 

Logistic 

regression was 

performed with 

variables 

selected using 

LASSO 

High discriminatory 

power:  

AUC of 0.740 [95% 

CI 0.726–0.753] in 

the validation group 

Single-center 

retrospective study; 

treatment protocols 

for these patients 

could vary from 

center to center 

 

 

AI Alerting Systems for Acute Kidney Injury 

     In 2015, Streams software was developed by Google with the 

capability to potentially forecast AKI and notify healthcare providers 

about the requirement for early intervention [29]. Subsequently, the 

application of AI in AKI started to attract increasing interest from 

researchers.  In 2019, Tomaše and colleagues [30] developed a model 

that accurately predicted 55.8% of inpatient episodes of AKI and 

90.2% of AKI requiring dialysis in a study involving 703,782 adult 

patients. In 2018, Lee and co-authors [31] conducted a retrospective 

review of 2,010 patients who underwent cardiac surgery. They trained 

AKI prediction models using six machine learning techniques: 

decision tree, random forest [RF], extreme gradient boosting, support 

vector machine [SVM], neural network classifier, and deep learning. 

The study revealed that the machine learning technique of extreme 

gradient boosting outperformed traditional logistic regression analysis 

and previous risk scores in predicting both all stages of AKI and stage 

2 or 3 AKI following cardiac surgery, potentially aiding in the 

evaluation of the condition. Yin and colleagues [32] conducted a 

retrospective study on 8,800 patients who received contrast 

administration. Their aim was to develop a model using the machine 

learning method of RF to predict Contrast-induced nephropathy 

[CIN], which is the third leading cause of all hospital-acquired renal 

failure. The model showed a high level of predictability for CIN 

development and could potentially indicate preventive measures for 

CIN.  In a study by Mohamadlou et al. [33], boosted ensemble decision 

trees were utilized to construct an AKI prediction model based on 

historical data from more than 300,000 hospitalized patients. The 

algorithm demonstrated strong predictive abilities in identifying 

patients at risk of developing AKI. Specifically, the prediction 

accuracy was higher for patients with patterns resembling AKI. These 
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methods empower physicians to potentially intervene before kidney 

injury manifests. Another research discovered that machine learning 

models [multivariate logistic regression, RF, and artificial neural 

networks [ANN]] were able to forecast the onset of AKI following 

admission to the ICU in a group of 23,950 patients with a respectable 

AUC [average AUC 0.783] [34]. 

AI Alerting System for Chronic Kidney Disease: 

      Reports have indicated that AI applications have been used to 

detect the presence of CKD. In Australia, a trial initiative utilized e-

technologies to identify CKD [Electronic Diagnosis and Management 

Assistance to Primary Care in Chronic Kidney Disease; EMAP-

CKD]. The program involved the development of software equipped 

with algorithms that were trained to recognize patients at risk and to 

request appropriate screening tests for CKD [35]. 

      The cost and mortality of patients can be predicted by AI. In 

2019, Lin et al. [36] suggested that using AI modeling could offer 

reliable data on one-year outcomes post-dialysis in elderly and super-

aged groups. They found that individuals with cancer, alcohol-related 

disease, stroke, chronic obstructive pulmonary disease [COPD], 

previous hip fracture, osteoporosis, dementia, and previous respiratory 

failure incurred higher medical costs and had elevated mortality rates. 

     In a study by Kanda et al. [37] in 2019, factors associated with 

progressive CKD were identified from a healthy population during a 

health checkpoint using a Bayesian network and artificial intelligence. 

The factors considered included hypertension, time-series changes in 

the prognostic category of CKD, proteinuria, and eGFR. 

2- Guiding treatment 

      Decisions making are made based on guidelines that are 

developed after extensive research. As a result, these 

recommendations are population-based, and they must be modified 

based on each unique situation. Personalized and precise treatment 

plans are essential. Analyzing the connection between treatment plans 

and effectiveness in a large patient population using AI can help in 

developing models based on effectiveness and risk factors. This can 

assist in selecting treatment plans and enhancing clinical effectiveness. 

Research on renal disease is scarce, especially in hemodialysis 

patients. 

Anemia treatment 

      Anemia is one of the most prevalent comorbidities seen in 

hemodialysis patients. As renal function declines, the prevalence and 

severity of anemia steadily increase [38]. Anemia in CKD results 

mainly from insufficient production of erythropoietin [EPO] [39]. 

Erythropoietin-stimulating agents [ESAs] are commonly used by 

clinicians to increase EPO and elevate hemoglobin [Hb] levels. 

However, the confirmed toxicity of ESAs is concerning, as they can 

elevate the risk of cardiovascular events, tumor progression, and 

mortality [40]. It has been noted that these toxicities are associated with 

dosage [41]. Identifying an appropriate therapy tailored to each patient's 

specific condition is crucial.  Computer-driven approaches have made 

significant advancements in providing erythropoietic dosage 

information for patients with chronic kidney disease. At first, the keys 

used were just digital versions of the traditional paper-based anemia 

management protocols. The real personalization came about through 

the use of advanced modeling methods like artificial neural networks, 

physiological models, and feedback control systems [42].  

In 2014 Barbieri recommended appropriate ESAs dosages using 

Machine Learning [Multilayer Perceptron, MLP] and a linear model 

developed for predicting ESAs therapeutic response. The MLP 

prediction model has an accuracy of higher than 90%. The MLP 

model beats earlier techniques for Hb prediction [43]. To assess the 

model's impact, the researchers conducted a 24-month retrospective 

analysis in 2016 with 752 more hemodialysis patients. According to 

the model predictions, median ESA consumption reduced while on-

target Hb readings increased. Furthermore, Hb fluctuation has 

significantly decreased. The approach might assist to improve anemic 

outcomes of patients on hemodialysis by limiting ESAs dose, with the 

potential to lower treatment costs[44]. The model might aid in 

increasing the percentage of Hb in the range while reducing the intake 

of ESAs with lower Hb variations. Meanwhile, transfusion, 

hospitalization, and cardiovascular events have all decreased. Finally, 

the model was a useful tool for doctors seeking to lower the risks and 

costs associated with ESA treatment. However, the sample size was 

small, and the follow-up period was inadequate to determine the 

model's influence on cardiovascular morbidity and death. At that time, 

the model was only utilized for hemodialysis patients; more studies 

should be conducted to confirm the efficacy of anemia therapy in pre-

dialysis and peritoneal dialysis patients. Furthermore, these techniques 

are data-intensive and often work well in areas where sufficient data is 

available to predict the ESA reaction, but are unable to extrapolate 

beyond these ranges [42]. 

Role of AI in Blood pressure control and fluid volume 

management in Hemodialysis 

Patients undergoing hemodialysis require careful monitoring of 

blood pressure [BP] and fluid volume, as these are crucial 

measurements. The prevalence of hypertension in ESRD patients 

varies from 40 to 90% based on the BP criteria used, the selected 

population, and the measurement period [45]. Managing blood pressure 

often involves reducing extracellular fluid volume overload, which in 

turn increases the risk of intradialytic hypotension. Both intradialytic 

hypotension and persistent hypertension are associated with poor 

prognosis. EuCliD® is an international electronic health record 

repository that enables point-of-care data capture for routine clinical 

practice information[46]. Barbieri et al. [46] created a multiple-endpoint 

model based on 766,000 recordings in 2019 that predicted session-

specific Kt/V, fluid volume clearance, heart rate, and blood pressure 

by utilizing this abundance of data. The model's precision and 

accuracy are promising. In addition to the already constrained single-

endpoint treatment options, the model could aid in the optimal 

decision-making process in multidimensional settings. 

3- Wearable Dialysis Devices 

Dialysis is the main treatment for ESRD, and it has a significant 

impact on patients' lives. Some patients may struggle with the 

hemodynamic instability of intermittent dialysis, but there is optimism 

about the development of wearable artificial kidneys. Wearable 

dialysis systems have the capability to analyze equipment alarms, 

dialysis parameters, and patient-related data in real-time, offering 

immediate feedback [47].  The combination of artificial intelligence and 

regenerative medicine technologies led to the development of 

wearable dialysis devices. These devices are capable of conducting 

continuous dialysis, effectively eliminating toxins, and do not impact 

hemodynamics [see Figure 4]. A study involving 15 ESRD patients 

assessed the devices and found that dialysis was successful without 

any adverse reactions. The devices have been granted breakthrough 

device status by the American Food and Drug Administration. 
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However, due to the small sample size, further research involving 

larger patient populations is necessary to improve the model in the 

future [47].  Another motivating wearable artificial kidney is a 5-kg 

miniaturized device with a sorbent-based hemodialysis system that is 

worn on the waist like a toolkit belt. It is currently in development at 

the University of Washington, USA. A clinical trial involving 10 

patients who received therapy with the wearable artificial kidney for 

24 hours was halted after the 7th subject, due to device-related 

technical issues. These issues included an excessive presence of 

carbon dioxide bubbles in the dialysate circuit, tubing kinks, and 

variable pump function causing fluctuations in blood and dialysate 

flow rates [48].  

 
Figure [4]: Artificial intelligence includes the science and engineering for developing smart wearable artificial kidneys [47]  

 

4- Implantable Renal Assist Device [iRAD]     

The implanted Renal Assist Device [iRAD] is an incredible 

innovation, designed to replicate the structure and function of kidneys 

using micromachining techniques. This bionic device features a 

silicon nanopore membrane and a bioreactor of live kidney cells to 

concentrate ultrafiltrate into urine. It is enclosed in a body-friendly box 

and connected to a patient's circulatory system and bladder. Although 

it has shown success in animal models [49], further development is 

needed to adapt it for clinical use [50]. Additionally, experts have 

discovered MXene Sorbents for the Elimination of Urea from 

Dialysate, offering potential for designing a miniaturized dialysate 

regeneration system for a wearable artificial kidney [51].   

5- AI Assistance of Needle Insertion in Hemodialysis Patients 

In the field of health care, robotics are gradually being integrated, 

particularly in surgical procedures. One example is the da Vinci® 

Surgical System, which incorporates a high-definition 3D computer 

vision system [assisted by machine learning] and small wristed 

instruments capable of more complex bending and rotation than the 

human hand. Additionally, a robotic system for autonomous image-

guided needle insertion has been developed for tasks such as blood 

draws and intravenous insertions. This system combines robotics, AI, 

computer vision, and image technology [Figure 5] [52]. The important 

thing to note is that a dialysis machine does not function as an AI-

powered robot. It lacks the ability to adapt to its surroundings in ways 

that haven't been explicitly taught by humans. However, it's not 

difficult to envision future dialysis robots that can perform complex 

sequences of actions automatically or in a semi-autonomous manner. 

Additionally, there are reports of achieving accurate needle insertion 

[within 3 mm error] in common target sites, including the kidneys, by 

using a CT-guided robotic system [53]. The suggested method of robot 

registration and operation based on optical tracking enables precise 

three-dimensional needle manipulation during ultrasound-guided 

percutaneous renal access [PRA] procedures, resulting in improved 

precision and reduced time [54]. 

5- Kidney transplantation 

        Another common treatment for ESRD is kidney 

transplantation. But because of the limited availability of kidneys and 

strict technical requirements, only a small number of individuals can 

receive the benefits of kidney transplantation. The optimization of 

transplantation parameters and adjustment of recipient, donor, and 

transplant procedural variables are crucial for predicting the result of 

kidney transplantation. In a retrospective analysis by Lofaro et al., 80 

renal transplant patients with 5-year follow-up were studied. 

Classification trees were used to create two predictive models, 

revealing six highly influential variables for patient outcomes. These 

models achieved AUC values of 0.847 and 0.824 respectively. 

Another study included 4754 systemic lupus erythematosus patients 

who received kidney transplants. Three machine learning algorithms 

were employed to establish predictive models. The AUC of the ANN 

model [0.73], based on six variables, outperformed the logistic 

regression based on six variables selected by Weka [0.73] and 

classification trees [0.70]. The findings indicated superior predictive 

performance of the ANN model compared to other models [55].  In 

2019, Abdeltawab and colleagues [56] developed a computer-aided 

diagnosis [CAD] system using deep learning. This system integrates 

imaging markers and clinical biomarkers to detect acute renal 

transplant rejection at an early stage. The overall accuracy of the 

system is 92.9%, with a sensitivity of 93.3% and specificity of 92.3% 

in distinguishing rejected kidney transplants from non-rejected ones. 
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.  

Figure [5]: System plan and building for automated cannula insertion. [a] Functional prototype. [b] Major functional components. [c] Device data flow. [d] The hardware architecture is 

assembled by function [52]. 

 
Figure [6]: showing the conclusion of AI applications in kidney disease in alerting systems, diagnostic support, guiding treatment, and assessing prognosis. AKI, acute kidney disease. 

CKD, chronic kidney disease. CKD-MBD, Chronic Kidney Disease - Mineral and Bone Disorder. IgAN, IgA nephropathy [57] 
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Challenges of AI 

Careful consideration of the risks and challenges linked to AI 

technology is crucial, and implementing measures to minimize these 

risks is essential. The following are some of the challenges:  

Data access and quality: Obtaining data sets for machine 

learning requires using a trustworthy source of pertinent data that is 

clean, easily accessible, well-organized, and secure. In nephrology, a 

common issue is the limited availability of data due to the rarity of 

many diseases and the lower prevalence of kidney disorders compared 

to other medical conditions [4]. 

Data privacy and security: When utilizing AI in nephrology, it's 

important to prioritize data protection. Patient information is sensitive 

and must be safeguarded in compliance with applicable laws like the 

General Data Protection Regulation [GDPR] in the European Union 

[EU]. Before analysis or storage in a different location from where it 

was gathered, patient data should be anonymized or pseudonymized. 

It's crucial to ensure the secure handling of patient data and to inform 

patients about the usage of their data. Any AI tool or project should 

incorporate a secure data management environment for handling 

sensitive data  [4]. 

Bias: The potential for bias in AI algorithms poses an additional 

concern. If biased data is used to train an AI program, it could 

perpetuate or worsen existing biases in the healthcare system. For 

instance, if an AI system is trained on data primarily from white 

patients with focal glomerulosclerosis, it might struggle to accurately 

identify or classify the condition in patients from other racial or ethnic 

backgrounds. To mitigate the risk of bias, AI algorithms need to be 

trained using diverse and inclusive data sets[4] . 

Trustworthiness: People tend to trust things that are easy to 

understand, and doctors are a good example of this. The main 

challenge with implementing AI in medicine is the uncertainty 

surrounding how learning models and inputs can predict outcomes and 

guide medical interventions. It is essential to have explainable AI to 

ensure transparency in AI decisions and the processes leading to those 

decisions, in order to avoid the opaque nature of many AI solutions.  

Various techniques can be used to address this issue. For example, 

methods such as feature importance rank the variables used by an AI 

model based on their impact on prediction results, providing insight 

into how each input influences the decision-making process. 

However, even with such techniques, OpenAI has acknowledged a 

lack of complete understanding of how ChatGPT operates and the 

absence of tools to explore the decision-making processes of newer 

models. This lack of understanding has led governments to implement 

measures to regulate and restrict the uncontrolled expansion of AI. 

One approach to enhancing trust in the field of nephrology is to 

educate the nephrological community about AI [4] . 

Computing power: The main technologies behind artificial 

intelligence are machine learning and deep learning, but their effective 

operation requires an increasing number of cores and GPUs, which are 

not always readily available. The primary challenge for the industry is 

to meet the computational capacity needed to process the extensive 

amounts of data essential for developing AI systems.  

Naturally, there is a significant environmental impact associated 

with the increased processing power. This poses a major barrier for 

many AI research projects and has raised concerns within the AI 

community. Consequently, there have been calls for greater 

transparency, optimization of training cycles, and a heightened focus 

on "green AI," which aims to generate innovative results without 

increasing, and preferably reducing, computational costs  [58].  

AI integration: Healthcare providers who are not experienced in 

using EHRs are still prevalent. It's a fact that there is limited 

interoperability, and incorporating AI into EHRs is often impractical 

in many healthcare settings, despite efforts by the EU to standardize 

them and the USA already having some shared patient information in 

place[4] .  

AI Specialists: A data scientist or data engineer, possessing 

specialized skills and knowledge, is required for integrating, 

deploying, and implementing AI. The scarcity and high cost of these 

specialists pose a significant challenge to implementing AI in 

healthcare or research settings, as they often prefer joining well-

compensated large organizations over working in public settings, such 

as most hospitals or research centers in Europe [4]. 

Legal issues: AI algorithms pose a potential risk of errors, despite 

their ability to rapidly and accurately process large amounts of data. It 

is essential to implement mechanisms for identifying and correcting 

these errors to ensure the safety and effectiveness of the technology. 

While AI technologies will currently support nephrologists in 

decision-making, they will not replace experienced professionals. If 

AI algorithms violate any laws or regulations, the company may face 

legal repercussions [4].  

 Summary and Conclusion 

 Artificial intelligence is rapidly being employed in nephrology, 

among other medical fields. AI's function in kidney disease involves 

warning the presence of CKD, performing diagnostic imaging, 

determining pathology, and directing treatment. Medicine showed  

significant progress, moving from traditional medicine to evidence-

based medicine, and now to AI. While AI is still in its early stages, it 

holds promise for further development. AI faces several hurdles, such 

as data accuracy, privacy and regulatory issues, lack of uniformity 

across facilities, and absence of validation. The potential benefits of 

AI implementation are significant, but it's crucial to recognize and 

address the associated risks and challenges. AI will soon become a 

common tool for nephrologists, so it's important for the nephrology 

community to be well-informed about this technology. To effectively 

implement AI, it's essential to have a grasp of the fundamental 

concepts of AI and how models are developed. 

      Although AI won't take the place of nephrologists, those who 

can effectively integrate it into their practice will likely enhance their 

abilities as doctors for their patients. It's important to acknowledge that 

the traditional responsibilities of healthcare professionals will have to 

change to accommodate the use of AI in clinical practice, and 

continuous education and training will be necessary to ensure ethical 

and successful use of AI. 
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